StanForD 2010 — Naming and design rules

Tapio Résénen
Juha-Antti Sorsa

Metsateho Oy

VERSION HISTORY

Date Version Description Authors
24.11.2008 0.5 First released draft, missing lots of text Juha-Antti Sorsa,
and examples Metsateho
31.12.2008 1.0 First released finalized version Juha-Antti Sorsa,
Metséteho
28.1.2009 1.1 Few updates and misspelling correc- Juha-Antti Sorsa,
tions Metsateho
5.1.2010 1.2 Added rules 7.6 and 7.7 and correct the Juha-Antti Sorsa,
corresponding topics in chapter 9 to fol- Metsateho
low those rules.
Updated the rule 12.4 to allow empty
elements in special cases.
Added abbreviations MIN and MAX
23.6.2010 1.3 Added abbreviation MTH Juha-Antti Sorsa,
Metsateho
13.2.2011 1.4 Updated the rule 7.4 to allow codelist Juha-Antti Sorsa,
namespace Metsateho
Updated the rule 10.1 to allow exten-
sion elements in many places in mes-
sages.
11.10.2011 1.5 Updated rule 12.3 to exclude order of John Arlinger,
attributes. Skogforsk
20.8.2012 1.6 Updated Rule 7.1 to exclude version Juha-Antti Sorsa,
information from namespace name. Up- Metsateho
dated also all texts and examples to fol-
low the new rule. This change is obeyed
from standard version 2.0.
4.3.2013 1.7 Corrected errors in examples relate to Juha-Antti Sorsa,

namespace naming.

Metséteho

Table of Contents

R 11 700 [0 Tox { o] USSR 5
IS R = 7 Yo 1 |01 T SRS 5
O AT (o [1= o (ot TSP 5
1.3 Terminology and NOTIONcveuiiieiieie ettt sreesaeeneesreeeeenes 6
1.4 IMIAIN TESOUICES ..eeuvitietieseeeteesteestesteesteeseesseesbeasee s b e sbeeseesbeesbeeseeebe et e esbesbe e beeneeebeebeaneesreeeennes 6
1.5 Example used in this dOCUMENL.........ccociiiieieeiecie e 7

D 1 | I 1ol T 4o RSP TRRTROTIO 8
2.1 OVErall SCNEMA FUIES ..ottt e st esneente e e aneenneens 8
2.2 SCREMA MOUUIES ...t be et e nae e 8

3 NAMING CONSIIAINTS ..vevieiieiieitieie e se e e e e e st e e s e e steestesseesseesaesreesteessesseesneaneennens 10

4 Elements and attriDULEScoiiiiiiie e e e 11
4.1 NAMING CONVENTIONScuiiieiteeieitiesteeiesee e et e seesteesee e e steeseesreesseaseesseesseaseeaseesaeeneesreeseanes 11
4.2 USING PRTOSOPNY ...ttt ettt b et sr e e enes 11

T Y/ o L= (=) 10 o] SR TSSSSS 12
5.1 Overall type definition FUIES.......ccuiiiiiieee e e 12
5.2 SIMPIE LYPES ..ttt ettt e te et naeaeenaenreeaeenes 13
ST B O70] 10101 [QR 1Y/ 1L SO SRTRPRR 15
5.4 ALTIDULE GIOUPS....c.viitiiiiieiie ettt ettt te et e s te e e ase e teesaeesaesnaeaeeneenreeneeanes 15

6 XML schema deSign PATEIMS.cuiiiiiiiie ettt e et nb e nneas 17
6.1 RUSSIAN DOIL ... 17
6.2 SAIAMIE SHICE ... nr e e anes 18
6.3 Venetian BlING..........cooo i 19
6.4 GArden OF EUeN.....c.i e 20
6.5 Schema design pattern for StanForD 2010..........ccocviiiiieieiiese e 20

T INBIMIESPACES. ...ttt ettt e e et R et h bt R e e R b e e R b e e R e e e Re e nn e e nes 21
7.1 Namespace Uniform Resource 1dentifiersccccoevveieeieiiesieece e 21
7.2 Declaring namespaces iN SChEMASccooiiiiiiiiii e 21

ST V=Y] o] 1T OSSR 24
8.1 OVerall VErsioniNg FUIESooiiiuiiii et 24
ST \V/ - [0 GV =T 6] [0 0L SR 25
ST B \V/ 1T a0 Y =T 6] o] SRR PRTR 25

9 Structure 0f SCNEMA FIlES........ceeii e 27
9.1 Structure of StanForD 2010 message schema filesS..........cccoceviriiiiiniinineee e 27
9.2 Structure of "StanForD2010CommonDefinitions.xsd” schema module...............ccccovennenne. 28
TR B QY | I [=Tod T = [o] o SR RPPRR 30
0.4 SCREMA NEAUETc..i et te e et eeae e nreeeeenes 30
0.5 XSA:SCNEMA BIEIMENT. ... et nre e 31
9.6 XSA:INCIUAE BIEMENL.....c.iieieeie ettt e e nreeeeenes 32
0.7 XSA:IMPOIT IBMENTottt b et sre e enes 32

O T (=] 1571 o1 L2 PSSR SSSSR 33

11 Miscellaneous XIML SCRemMa FUIESociiiiiiiiiee e 36
111 Element CONtENt COMPOSITONS.ciuveieiieiieeie et sre e enne e 36
11.2 ANnotation and dOCUMENTATION.uiiiiiiiie i 36
11.3 OFNEI TUIES ..t e st e e e e te et e s reesaeennennens 37

12 Stanford 2010 INStaNCE DOCUMENLScoeeeeeeeeeee e 38

12,1 ValIOAIION ©oeiieiiie bbbttt bbbt 38
12.2 Structure of StanFOrD 2010 MESSAGES. ... ecuverreerierrerrieerieeersieesiesreesreeaesreesreseesseesaeseessens 38
12.3 XML DECIATAIION ...t bbbt 39
12.4 Attributes in the root element Of the MESSAQES.........ccvveririieiiiiiee e 39
12.5 EMPLY CONTENT ...t b e st be e e anne s 39
APPENDIX A. StanForD 2010 abbreviations and aCronymS...........ccccuveereniieneeninie e 40

APPENDIX B. Standard suffixes for certain representation types in StanForD 2010...................... 41

1 INTRODUCTION

1.1 Background

The data structure and format of StanForD has not been changed since the standard was established
in 1986-1987. Discussions about updating the standard towards better structures and a new, more
flexible format were started in the early years of 2000. First versions of StanForD XML-files were
made then. Finally, the decision to upgrade the standard was made 2006-08-25 when StanForD
2010 —project was started.

One of the reasons to update the standard is that its technical data format has been considered too
limited and complex for the present data management needs. The problem of the format is that it is
unique, requires a lot of work to understand and special programming for implementing. For ex-
ample, it does not support use of web technologies or communication with databases. Therefore it
was decided, together with users and machine manufacturers, that one of the objectives of develop-
ing a new standard is to achieve a common and general format with open interface, making it easier
to implement the standard in new wood supply applications.

XML has been chosen for the presentation technology of StanForD 2010. It was seen as the best
solution because of its leading position as presentation technology of structured data and docu-
ments, especially in web-based applications. XML is general, open and free to use as well as well-
supported by software developers and suppliers. Different XML technologies are being developed
strongly all over the world and there are agreements on standardization of certain parts of XML.
XML is utilized today in various data management systems of the forest companies and forest ma-
chine manufacturers. XML is used also in papiNet standard which is being extended for wood sup-
ply purposes, especially for data and message exchange between business partners of logistic
chains. The goal is that StanForD and papiNet will remain independent standards but that they
could support each other.

One of the main tasks of StanForD 2010 —project was to define the requirements of the data format
in the new standard and to study how different solutions and ways to use XML suit those. This re-
port presents the main issues of the study and gives the proposals concerning the format and the use
of XML.

1.2 Audience

The main audience for this StanForD 2010 — Naming and Design Rules is the members of Stan-
ForD standardization group, especially those who are responsible for creating and maintaining
StanForD 2010 schema definitions. Additionally all the representative of the organizations that are
using StanForD messages might find this document useful for their system and software develop-
ment tasks.

1.3 Terminology and notion

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD
NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this specification, are to be
interpreted as described in Internet Engineering Task Force (IETF) Request For Comments (RFC)
2119.1. Non-capitalized forms of these words are used in the regular English sense.

Example — A representation of a definition or a rule. Examples are informative.

[Rule c.n] — Identification of a rule that requires conformance. Rules are normative. All the charac-
ters in rule text are in italics font. Rules are numbered as following:

¢ = chapter number
n = an increasing sequence of integers inside chapter starting from 1

When defining rules, the following annotations are used:

[1 =optional
<> =variable
| =choice

Additionally the text backgrounds of the rules have light grey color.

Courier font- All XML code. Additionally different colors for different lexical elements in-
crease readability.

1.4 Main resources

There are lots of resources available on the web that gives us best practices and guidelines for using
XML Schema Language. The following resources were the most influential while writing this doc-
ument.

First of all there are two working drafts that gather most used practices and guidelines in schema
development area. The first one is "Universal Business Language (UBL) Naming and Design Rules
2.0" from OASIS Universal Business Language Technical Committee (http://docs.oasis-
open.org/ubl/prd-UBL-NDR-2.0.pdf) and the second more recent one "XML Naming and Design
Rules V3.0" from UN/CEFACT (United Nation / Centre for Trade Facilitation and Electronic Busi-
ness) (http://unstandards.org:8080/download/attachments/20381763/Specification... XML+Naming
+and+Design+Rules+V3.0+1st+Public+Review.pdf)

Additionally resources are the following

http://www.xfront.com Roger L. Costello's web pages have good collection of XML Schema
Best Practices that were developed collaboratively by members of the
xml-dev list group.

http://www.xml.com The publisher O’Reilly supports and maintains this informative site.

http://www.w3.0rg/ The home page of the World Wide Web Consortium (W3C) is main re-
source for XML specifications.

1.5 Example used in this document

In this document all XML code examples are based on instance document scenario that is repre-
sented in the following UML class diagram.

HarvesterProduction

Stem Log
+StemNumber +AssortmentName
+TreeSpeciesName +LogNumber
+BarkParameterCode +Volume

Instance documents are very simplified examples of harvester production data that is composed of
stems and each stem has from one to many logs. Each stem has also three properties that are a stem
number, a tree species name and a country specific bark parameter code. Each log has three proper-
ties that are an assortment name, a log number and a volume. One example of XML instance docu-
ment that obeys the UML graph design can be seen in the following code.

Example

<?xml version="1.0" encoding="UTF-8"7?>
<HarvesterProduction>
<Stem stemNumber="1" treeSpeciesName="Pine" barkParameterCode="1">
<Log logNumber="1" assortmentName="Saw log"'>
<Volume>400.0</Volume>
</Log>
<Log logNumber="2" assortmentName="Pulp'>
<Volume>150.0</Volume>
</Log>
</Stem>
</HarvesterProduction>

The XML specific features of the instance document code are described in the chapters of this doc-
ument. One must remember that this harvester production example is provided for this document
only. Its data content varies in many ways in proportion to the actual harvester production message
of the StanForD 2010 standard.

2 XML SCHEMAS

2.1 Overall schema rules

XML is intended to be a self-describing data format, allowing authors to define a set of element and
attribute names that describe the content of a document. In addition to that, we need to be able to
define what element and attribute names are allowed to appear in a conforming document in order
to make that document useful. Furthermore, we need to be able to indicate what kind of content
each element and attribute is allowed to contain. Only then can we have an agreement what is the
meaning of the markup, be it for a human or for an application.

A schema defines the allowable contents of a class of XML documents. A class of documents refers
to all possible permutations of structure in documents that will still conform to the rules of the
schema.

There are numerous XML schema languages available today, all with their strengths and weakness-
es. Because the W3C XML Schema Language is the schema definition language with the broadest
adoption and the best tool and software support, it has been chosen the schema definition language
for the StanForD 2010 standardization task.

[Rule 2.1] All StanForD 2010 schema design rules MUST be based on the W3C XML Sche-
ma Recommendations: XML Schema Part 1: Structures Second Edition and XML
Schema 1.1 Part 2: Datatypes.

The W3C is the most important source of XML specifications. Those specifications have various
statuses during their development. It’s important that only finally approved versions are used.

[Rule 2.2] All StanForD 2010 conformant XML instance documents MUST be based on the
W3C specifications that have recommendation status.

The contents of the schemas can be structured lexically different ways. However, one predefined
consistent way to do it is essential.

[Rule 2.3] All StanForD 2010 schemas MUST follow the standard structure defined in chap-
ter 9.

2.2 Schema modules

Modularity in schema design promotes reuse and provides significant management capabilities.
Modules can be either unique in their functionality, or represent splitting of larger schema files for
performance or manageability enhancement. A modularity model provides an efficient and effective
mechanism for importing and including components as needed rather than dealing with complex,
multi-focused schema.

StanFord 2010 schema module design is quite straightforward that can be seen in picture 2.1. Every
StanFord 2010 message has its own schema module. Every schema module includes one common
schema module “StanForDCommonDefinition_version.xsd” which contains all common global
type definitions that are used in several message schemas. Additionally it’s possible that StanForD

2010 schema modules could import additional schema modules from external sources. All Stan-
ForD 2010 schema modules belong to one common StanForD 2010 specific namespace (more de-
tailed presentation will be in chapter 7).

StanForD 2010
Namespace
External modules
StanForD2010Common Namespace
Definitions_V1p0.xsd
ExternalSchema
Module.xsd
Include Include
HarvesterProduction Buckinglnstruction_ Import
_V1pO0.xsd V1p0.xsd
Picture 2.1

StanForD 2010 message schema files are named formally according the following rule.

[Rule 2.4] The file name for StanForD 2010 messages schema modules MUST follow the
form <MessageSchemaModuleName>_<Version>.xsd.

In above rule <MessageSchemaModuleName> is predefined StanForD 2010 message name and
<Version> is version number of the schema. Version conventions are presented in chapter 8.

10

3 NAMING CONSTRAINTS

Because StanForD is multinational standard, English has been chosen its official language. XML
and XML development work could be done in principle using national languages. However XML
tools and software are not necessarily supported by other languages than English. Hence XML de-
velopment language should also be English.

[Rule 3.1]

Element, attribute and type names MUST be composed of words in the English
language.

The following set of naming rules is commonly used best practices. There are no reasons not to fol-
low them in this standardization task also.

[Rule 3.2]

[Rule 3.3]

[Rule 3.4]

[Rule 3.5]

[Rule 3.6]

[Rule 3.7]

[Rule 3.8]

[Rule 3.9]

UpperCamelCase (UCC) MUST be used for naming elements and types.

Example

<AssortmentName>Pulp</AssortmentName>

LowerCamelCase (LCC) MUST be used for naming attributes.
Example

<Log logNumber="2" assortmentName="Pulp"” volume="150.0"/>

Element, attribute and type names MUST be in singular form unless the concept
itself is plural.

Element, attribute and type names MUST be drawn from the following character
set: a-z, A-Z and 0-9.

XML element, attribute and type names MUST NOT use acronyms, abbreviations,
or other word truncations, except those included in the appendix A. List of ap-
proved acronyms and abbreviations.

The acronyms and abbreviations listed in the Appendix A MUST always be used
in place of the word or phrase they represent.

Acronyms MUST appear in all upper case except for when the acronym is the first
set of characters of an attribute in which case they will be all lower case.
Example

MachinelD

Element and attribute names SHOULD include suffixes from the table of repre-
sentation types found in the Appendix B (adapted from ebXML) when appropriate.

11

4 ELEMENTSAND ATTRIBUTES

4.1 Naming conventions

Proper naming conventions increase the readability and understandability of the StanForD 2010
message documents.

[Rule 4.1] Element and attribute names SHOULD be chosen so that they identify what those
elements and attributes contain.

4.2 Using philosophy

Actual data in XML documents can locate in elements or attributes. For example, we could techni-
cally compose Log element using only elements as in the following example.

Example

<Log>
<LogNumber>2</LogNumber>
<AssortmentName>Pulp</AssortmentName>
<Volume>150.0</Volume>

</Log>

Actual data values are the same as in example in chapter 2.6 but here we have implemented it using
only a nested element structure. On the other hand, we could do following transformation to our ex-
ample

Example

<Log logNumber="2" assortmentName="Pulp" volume="150.0"/>
Now Log element’s content is empty and all values are stored in attributes.

There has been recurring mild debate about when one should use attributes and when one should
use elements. There are no clear rules how we should divide our data between elements and attrib-
utes. Technically attributes are more compact way to store data but they can be only used for non-
structured data i.e. they must be simple. So if there is a need to implement hierarchical structures in
XML documents elements have to be used for that. In addition if we want to have values in some
specific order we have to implement those using elements because attributes have no order.

The most used rule of thumb in this topic is to prefer to use attributes for metadata (i.e. data that de-
scribes actual data) as opposed to the data itself. However, this is quite rough rule because what is
data and what is metadata depends heavily on who is reading your document for what purpose. In
StanForD 2010 standard work this rule of thumb is followed because it improves the readability and
understandability of messages. The example XML instance document in chapter 1.6 follows this
rule of thumb.

[Rule 4.2] In general attributes SHOULD be used to store metadata and elements for actual
data.

12

5 TYPE DEFINITIONS

One of the most important properties of XML Schema Language is possibility to build new user
defined and named data types. This enables us to design and implement reusable and customizable
schema components. Hence schema development process is quite similar as designing class struc-
tures in object-oriented languages.

5.1 Overall type definition rules

The following rules relate both to simple and complex types in schema definition files. Some of
these rules will become more understandable in the chapter 6.

[Rule 5.1] If the user defined type is used in many schema modules it MUST be defined in
StanForD2010CommonDefinitions schema module. If it is used only in one sche-
ma module it should be defined in that. However, if there is a vision that type
could be used in future in other schema modules also it SHOULD be defined in
StanForD2010CommonDefinitions schema module.

User defined types should always be named using same kind of layout so that we achieve clear
distinction between element/attribute names and type names and so our schema definitions become
more readable and understandable.

[Rule 5.2] All user defined types MUST be named using upper camel case as already pre-
sented in the rule 3.2 and additionally all the names MUST have suffix Type .

Example

<xsd:complexType name="HarvesterProductionType'>
<xsd:sequence>
<xsd:element name="'Stem" type="StemType" maxOccurs=""unbounded"/>
</xsd:sequence>
</xsd:complexType>

[Rule 5.3] Anonym types MUST NOT be used.

This means that it is not possible to declare elements so that the type definition of the element is
included as a part of elements declaration. So the following example element declaration is not al-
lowed.

Example

<xsd:element name="Log" maxOccurs="unbounded">
<xsd:complexType"'>
<xsd:sequence>
<xsd:element name="Volume" type="'xsd:decimal'/>
</xsd:sequence>
<xsd:attribute name="logNumber" type="xsd:integer" use="required"/>
<xsd:attribute name="assortmentName" type="xsd:string" use="required"/>
</xsd:complexType>
</xsd:element>

13

[Rule 5.4] All user defined types MUST be defined globally in the schema module.
All the global type definitions are possible structures for reuse and customization.

The XML Schema Language has predefined type xsd:anyType. Using this type we can have fol-
lowing kinds of element declarations.

Example
<xsd:element name="Anything" type="xsd:anyType"/>

The content of the element declared in this way is unconstrained, so the element value may be 150,
but it may be any other sequence of characters as well, or indeed a mixture of characters and ele-
ments. This kind of flexibility is not an objective of StanForD 2010.

[Rule 5.5] The predefined XML Schema Language type xsd:anyType MUST NOT be used.
It is also possible to declare elements without types.

Example

<xsd:element name="Anything"/>

In this case also the type for element Anything is xsd:anyType because it is a default type if
type attribute is missing.

[Rule 5.6] Element declaration MUST always specify type.

5.2 Simple types

Simple types are strings that don’t contain any child elements, but might be constrained to be nu-
meric or otherwise specially-formatted. For example attribute values are always simple types. Sim-
ple types can be either primitive or derived. Primitive types cannot themselves be defined from any
smaller components. Derived types are defined in terms of an existing type.

XML Schema specification provides a set of predefined simple types, known as built-in types. Al-
together there are 44 built-in types and 19 of those are primitive ones and 25 are derived ones.

Whenever it is suitable in StanForD 2010 schema development we should use built-in types for
simple types. However, because the set of the predefined types is quite big and there are sometimes
many alternatives for certain kind of types (e.g. integers), we should define proper subset built-in
types that should be used in StanForD 2010.

[Rule 5.7] StanForD 2010 Schema definitions SHOULD use only the built-in types found in
the table 1

14

Built-in type Description Examples (delimited with
commas)

string a character string of any length this is a string

boolean a two-state “true” or “false” flag true, false, 1, 0

decimal a decimal number of arbitrary preci- 12.456, -12.0

sion

dateTime a specific instance in time 2008-10-01T11:30:23

integer any integer number 12,0, -400

negativelnteger any integer number with a value <0 -12, -400

positivelnteger any integer number with a value > 0 12, 400

nonPositivelnteger any integer number with avalue <=0 | -400, -12, 0

nonNegativelnteger any integer number with avalue>=0 |0, 12, 400

Table 1

If there is a need for simple types that are not found from built-in types, they must be derived from

existing type (base type) either by extension or restriction. The following example defines user
named simple type TreeSpeciesNameType. Elements or attributes that are declared to be this
type can have a value that is Pine, Spruce or Birch and nothing else.

Example

<xsd:simpleType name=""TreeSpeciesNameType''>
<xsd:restriction base="'xsd:string">
<xsd:enumeration value="Pine'/>
<xsd:enumeration value="Spruce'/>
<xsd:enumeration value="Birch"/>
</xsd:restriction>
</xsd:simpleType>

The other example defines a new simple type for decimal numbers that are not negative i.e. they
are greater or equal than zero.

Example

<xsd:simpleType name="NonNegativeDecimalType"'>
<xsd:restriction base="'xsd:decimal'>
<xsd:minlnclusive value="0"/>
</xsd:restriction>
</xsd:simpleType>

[Rule 5.8] User defined simple data types SHOULD be used when there are needs to in-
crease the validation power of the schema

15

5.3 Complex types

Elements are considered complex types if they contain child elements or attributes. The simplest
form of complex type definition is maybe the case when simple content element has one attribute.
The following complex type example defines VolumeType and it has one attribute measuremen-
tUnit for defining what the unit of the volume element's value is.

Example

<xsd:complexType name="VolumeType">
<xsd:simpleContent>
<xsd:extension base=""xsd:float'>
<xsd:attribute name="measurementUnit" type="MeasurementUnitType"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

The following Log example is using the new volume structure defined above.

Example

<Log logNumber="1" assortmentName=""Saw log'>
<Volume measurementUnit="cubic meter'>400.0</Volume>
</Log>

In the same way as in simple types new complex types can be derived from existing complex types
either using extension or restriction. However, derivation by restriction in complex types is general-
ly considered to be its most complex parts of XML Schema Language. This kind of derivation does
not map to concepts in either object oriented programming or relational database concepts, which
are the primary producers and consumers of XML data. This is the exact opposite of the situation
with derivation by extension of complex types.

[Rule 5.9] Complex type extension MAY be used where appropriate. Complex type re-
striction MUST NOT be used.

5.4 Attribute groups

In XML attributes are way to store information when the information is not structured (vs. ele-
ments) and there is need for specific order between attributes. Because these limitations there are
not same way possible to define "complex types” for attributes as we can do with elements. Howev-
er, XML Schema Language provides attribute group concept for improving reusability in schema
development.

Attribute group is defined in schema using xsd:attributeGroup element. The purpose of that
element is to group a set of attribute declarations so that they can be incorporated as a group into
complex type definitions.

16

We again use Log part of the HarvesterProduction message as an example to clarify the attribute
group concept. The Log is maybe not the best example for explaining attribute groups when we
think about the real StanForD 2010 messages, but because our HarvesterProduction message exam-
ple in this document is so simple we are satisfied with it. First the actual Log element

<Log logNumber="2" assortmentName="Pulp">
<Volume>150.0</Volume>
</Log>

and then the corresponding schema definition for Log

<xsd:complexType name="LogType''>
<xsd:sequence>
<xsd:element name="Volume" type="xsd:decimal'/>
</xsd:sequence>
<xsd:attribute name="logNumber™ type='xsd:integer" use="required'"/>
<xsd:attribute name="assortmentName'" type='"xsd:string" use="required"/>
</xsd:complexType>

If we want to group the attribute declarations of the LogType into attribute group, schema defini-
tion for that is

<xsd:attributeGroup name="LogAttributeGroup'>
<xsd:attribute name="logNumber"™ type='xsd:integer" use="required"/>
<xsd:attribute name="assortmentName" type='xsd:string" use="‘required"/>
<xsd:attributeGroup>

When LogAttributeGroup is used in schema definition of LogType it looks like this

<xsd:complexType name="LogType''>
<xsd:sequence>
<xsd:element name="Volume" type="xsd:decimal"/>
</xsd:sequence>
<xsd:attributeGroup ref="LogAttributeGroup"/>
</xsd:complexType>

We must remember, firstly, that the order of the attribute declarations in attribute group have no
meaning for attributes in actual log instances because in XML attributes do not have order relation.
Secondly, this is only concept that helps our schema development work and so the actual instances
look exactly identical if we are using attribute groups or not.

Then some rules for using attribute groups in StanForD 2010.

[Rule 5.10] User defined attribute groups SHOULD be used when there is possibility to reuse
attribute groups in schema definitions. Attribute groups MUST be defined in
StanForD2010CommonDefinitions schema module if there is possibility that they
are used in multiple schemas.

[Rule 5.11] All user defined attribute groups MUST be named using upper camel and addi-
tionally all the names MUST have suffix AttributeGroup.

17

6 XML SCHEMA DESIGN PATTERNS

It is possible to provide schema definitions for one instance document i.e. StanForD 2010 message
in many alternative ways when XML Schema Language is used as a schema definition language.
The main goals we try to achieve when deciding what alternative should be used are reusability,
customization possibility and easiness to develop instance documents.

The following XML instance document is simplified example of the original example that was rep-
resented in chapter 1.6. All the attributes have been removed so that the following different kinds of
schema definitions are easier to understand.

<?xml version="1.0" encoding="UTF-8"7?>
<HarvesterProduction>
<Stem>
<Log>
<Volume>400.0</Volume>
</Log>
<Log>
<Volume>150.0</Volume>
</Log>
</Stem>
</HarvesterProduction>

In addition namespaces and versioning issues are represented in the chapters 7 and 8 so those things
are also omitted from these schema examples. In the following chapters four well known XML
schema design patterns are represented. All of them validate XML instance document seen above.

To understand differences of the schema design patterns it is important to understand what is the
difference between local and global definitions of schema components (elements or types). A global
schema component (element or type) is the one that is declared immediately under the root element
<xsd:schema> of the schema definition. Local components instead are not declared immediate-
ly under the root element. The global components are important because those are the ones that can
be reused in the same schema module and also all the other schema modules.

6.1 Russian Doll

The first schema design pattern is called Russian Doll. It has exactly one global element declara-
tion. All the other element declarations are local and nested the global one. In addition all the type
definitions are unnamed for each corresponding element declaration. The schema code for Russian
Doll is on the next page.

18

Example

<?xml version="1.0" encoding="UTF-8"7?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema'">
<xsd:element name="'HarvesterProduction'> € Global element
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Stem" maxOccurs="unbounded'>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Log" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Volume" type='xsd:decimal"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Because Russian Doll design pattern does not support reusability and type customization, it is not
proper choice for StanForD 2010 schema design.

6.2 Salami Slice

In Salami Slice design pattern all element declarations are global. In this case all nested element
references are implemented using ref-attribute and the globally declared element name.

Example

<?xml version="1.0" encoding="UTF-8"7?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema'">

<xsd:element name=""HarvesterProduction'> € Global element
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="Stem" maxOccurs=""unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="'Stem"> € Global element
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="Log" maxOccurs="unbounded'/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="'Log"> € Global element
<xsd:complexType>

19

<xsd:sequence>
<xsd:element ref="Volume"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="Volume" type="xsd:decimal"/> <€ Global element

</xsd:schema>

All global elements are reusable both in the same schema module and other schema modules. How-
ever customization goal is not achieved because there are no globally named type definitions. All
type definitions are anonymous as a part of element declarations. In addition this design pattern
provides us a valid instance document for each global element name. One valid document could be
for example:

<Volume>400.0</Volume>

However, this is not a desirable feature because StanForD 2010 is not a standard for general reusa-
ble components.

6.3 Venetian Blind

The main idea in Venetian Blind schema design pattern is that we have only one global element
declaration but many global type definitions. All the global type definitions are possible structures
for reuse in the same and other schema modules. In addition those type definitions are also customi-
zation structures. It is possible to provide new type definitions using the existing ones either restrict-
ing or increasing them.

Example

<?xml version="1.0" encoding="UTF-8"7?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"">

<xsd:element name="HarvesterProduction” type='"HarvesterProductionType'/>
€ Global element

<xsd:complexType name="HarvesterProductionType'> € Global type
<xsd:sequence>
<xsd:element name="'Stem" type="'StemType' maxOccurs="‘unbounded'/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="'StemType"''> € Global type
<xsd:sequence>
<xsd:element name=""Log" type="LogType" maxOccurs=""unbounded"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="LogType''> € CGlobal type
<xsd:sequence>
<xsd:element name=""Volume" type="xsd:decimal"/>
</xsd:sequence>
</xsd:complexType>

</xsd:schema>

20

6.4 Garden of Eden

The Garden of Eden schema design pattern is a combination of Salami Slice and Venetian Blind
because both element declarations and type definitions are global.

Example

<?xml version="1.0" encoding="UTF-8"7?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"">

<xsd:element name="'HarvesterProduction'> € Global element

<xsd:complexType name="HarvesterProductionType'> € Global type
<xsd:sequence>
<xsd:element ref="Stem" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

<xsd:element name="'Stem" type="'StemType'/> € Global element

<xsd:complexType name="StemType"> € Global type
<xsd:sequence>
<xsd:element ref="Log" maxOccurs="unbounded'/>
</xsd:sequence>
</xsd:complexType>

<xsd:element name=""Log" type="LogType'/> € Global element

<xsd:complexType name="LogType''> € Global type
<xsd:sequence>
<xsd:element ref="Volume"/>
</xsd:sequence>
</xsd:complexType>

<xsd:element name="Volume" type="'xsd:decimal'/> € Global element

</xsd:schema>

Garden of Eden schema design pattern support both type reusability and customization. However,
because all elements are globally declared they are all also valid instance documents which is al-
ways desirable feature.

6.5 Schema design pattern for StanForD 2010

StanForD 2010 schemas should support reusability and customization. Hence the decision which
schema design pattern development work should follow must be made between Venetian Blind and
Garden of Eden. StanForD 2010 is the standard of a set of well defined messages. It is not meant to
be a general library of standard reusable and customizable components, which might need globally
declared elements. Therefore Venetian Blind schema design pattern is enough for StanForD 2010
schema development process.

[Rule 6.1] Schema development work in StanForD 2010 SHOULD follow Venetian Blind
schema design pattern.

21

7 NAMESPACES

A namespace is a uniquely named collection of names for elements, attributes and types that can
unambiguously distinguish the collection from other collection of names in another namespace.
XML Namespace is W3C recommendation and it is the mechanism to solve name conflicts that
might occur if information from different sources is merged. The negative thing is that using
namespaces increases both syntactical and semantical complexity in XML schemas and instance
documents. However, using proper techniques it is possible to hide additional complexity in most
cases.

7.1 Namespace Uniform Resource Identifiers

XML Namespace recommendation specifies that an XML namespace is identified i.e. named by a
URI (Uniform Resource Identifier, RFC 2396 — http://www.ietf.org/rfc/rfc2396.txt) reference.
There are two syntactically different alternatives for URIs: URN or URL.

URN (Uniform Resource Name) is a subset of URI that are required to remain globally unique and
persistent even when the resource ceases to exist or becomes unavailable and for that reason URNs
are easy to conceptualize as a name and not a location.

URL (Uniform Resource Locator) refers to a subset of URI that identify resources via representa-
tion of their primary access mechanism rather that identifying the resource by name of that re-
source. URLs are fundamental to the World Wide Web, because all web-addresses are valid URLSs.

Namespace names have two desirable properties. They should be persistent and resolvable. URNs
are persistent but they are not resolvable, whereas URLs are resolvable but they are not persistent.

We see that persistence is more important property for namespace than resolvability so StanForD
2010 namespace is named according to the following URN syntax.

[Rule 7.1] The namespace names for StanForD 2010 schemas follow URN specification and
MUST be of the form:

urn:skogforsk:stanford2010

7.2 Declaring namespaces in schemas

In general namespaces are declared as an attribute of an element. Namespaces in StanForD 2010 are
declared only in attributes of the root element of the XML schema module. A namespace is de-
clared generally in xsd:schema element as follows:

Example

<xsd:schema xmlns:sfd=""urn:skogforsk:stanford2010">

22

In the attribute xmIns:sfd, xmlIns is like a reserved word, which is used only to declare a
namespace and sfd is a abbreviation prefix for usually quite long namespace name. So, the above
example is read as binding the prefix "sfd" with the namespace "urn:skogforsk:stanford2010"

The StanForD 2010 namespace is called target namespace where the newly defined elements and
attributes will reside. Declaring target namespace has a little bit different syntax than the general
one.

[Rule 7.2] Every StanForD 2010 defined schema module, MUST have a namespace declared
using the xsd: targetNamespace attribute.

Example

targetNamespace=""urn:skogforsk:stanford2010"

In general we have to use namespace prefix to qualify our element and attribute names in schema
files. If we declare our StanForD 2010 namespace as default then any element within the scope of
the declaration will be qualified implicitly and no prefixes are needed. However, there could be on-
ly one default namespace in existence, so all names from other namespaces have to be qualified. For
example all the names from the schema namespace http://www.w3.0org/2001/XMLSchema must be
qualified using xsd prefix.

[Rule 7.3] Every StanForD 2010 defined schema module, MUST have default namespace
declared using the xsd:xmlIns attribute.

Example

xmIns="urn:skogforsk:stanford2010"

In StanForD 2010 we have decided to have only one target namespace for all schema modules.
Other option could have been to have different namespace for each message schema module. That
solution would have made possible to have different version for every message independently of
each other. However because most of the schema "stuff" is put into StanForD2010CommonDefi-
nitions schema module, there is no need for finer versioning politics.

23

[Rule 7.4] Every StanForD 2010 defined schema module MUST have common unique
namespace. However there is one exception: StanForD2010CodeL.ist schema
module has its own namespace "urn:skogforsk:stanford2010:codelist™

All the possible other schemas that are used in constructing StanForD 2010 messages belong to oth-
er namespaces than StanForD 2010 namespace.

[Rule 7.5] StanForD 2010 namespaces MUST only contain StanForD 2010 developed sche-
ma modules.

Because we have defined that there is always default namespace defined in schema modules there is
normally no need to add namespace names (or prefixes) in element and attribute names. However
there is one exception when we have to use them. If we define unique- and key/keyref -constraints
in our schemas we have to include targetnamespace prefix for all element names that are used in
selector and field parts of the constraint definition. Therefore we have to declare that namespace
prefix in all our schema modules.

[Rule 7.6] Every StanForD 2010 defined schema module, MUST define a prefix sfd as an
abbreviation to the target namespace.

Example

xmlIns:sfd="urn:skogforsk:stanford2010"

Because we add documentation text inside our schema definitions (in chapter 11.2), it is desirable to
separate it clearly from actual data definitions. This is achieved by defining all the documentation
text inside own namespace reserved for that purpose only.

[Rule 7.7] Every StanForD 2010 defined schema module, MUST define a namespace

xmlIns:doc="urn:skogforsk:stanford2010:doc"

Example

xmIns:doc="urn:skogforsk:stanford2010:doc""

24

8 VERSIONING
StanForD 2010 has adopted a three-layer versioning scheme: major, minor and status. Major, minor

and status version information is captured within the xsd: version attribute of the xsd:schema ele-
ment. Additionally all the schema file names have major and minor version information.

8.1 Overall versioning rules
XML Schema Language have predefined place to store versioning information. This version attrib-
ute is included in the xsd:schema element. It is natural to store the versioning information there be-
cause it is possible that some XML tools could use it from there.
[Rule 8.1] The xsd:schema version attribute MUST always be declared.
The versioning information stored in version attribute must be detailed versioning information.
[Rule 8.2] The xsd:schema version attribute MUST use the following template:

<xsd:schema ... version=""draft” |’ release”_ <major>.<minor> >

Where:

draft | release — is used based upon the status.

<major> - sequential number of the major version.
<minor> - sequential number of the minor version.

Example

<xsd:schema.. version="draft_1.0">

Other natural and very often used place to store versioning information is the names of the schema
files.

[Rule 8.3] Version information in StanForD 2010 schema file names <MessageSchemaMod-
uleName>_<Version>.xsd. (Rule 2.4 in chapter 2.2) MUST use the following
format:

<Version> => V<major>"p"<minor>

Where:

<major> - sequential number of the major version.
<minor> - sequential number of the minor version.

Example

HarvesterProduction_V1p0.xsd

25

Version information and history of the schemas must be managed carefully. It is clear that all the
companies that are using StanForD 2010 are not using the exactly the same version of the standard.

[Rule 8.4] StanForD 2010 web site MUST have

- all schema files that have status "release"
- version history of those schema files
- change history of those schema files

This means that schema files that have status "standard" are never removed.

8.2 Major versions

A major version of a StanForD 2010 schema file is not backward compatible to previous major ver-
sions of the schema. If any StanForD 2010 message instance based on an older major version of
schema is validated against a newer version, it should provide validation errors. A new major ver-
sion will be produced when non-backward compatible changes occur. This would include the fol-
lowing changes:

e Removing or changing values in enumerations

e Changing of element names, type names and attribute names

e Changing the structures so as to break polymorphic processing capabilities
e Deleting or adding mandatory elements or attributes

e Changing cardinality from mandatory to optional

Major version numbers will be based on logical progressions to ensure semantic understanding of
the approach and guarantee consistency in representation.

[Rule 8.5] Every StanForD 2010 schema major version number MUST be a sequentially as-
signed incremental integer greater than zero.

8.3 Minor versions

Within a major version of a StanForD 2010 schema file there can be a series of minor, or backward
compatible, changes. The minor versioning of the schemas helps to identify backward and forward
compatibility. Minor versions will only be increased when compatible changes occur, i.e.

¢ Adding values to enumerations
¢ Add optional elements or attributes

[Rule 8.6] Minor versioning MUST be limited to declaring new optional XML content, ex-
tending existing XML content, or refinements of an optional nature.

If the changes in some StanForD 2010 schema module means that previously valid instance docu-
ments become invalid the change has not been a minor one.

26

[Rule 8.7] StanForD 2010 schema module minor version changes MUST not break semantic
compatibility with prior versions that have same major version number.

Minor version numbering follows corresponding major one. Additionally minor version number
zero is also allowed.

[Rule 8.8] Every StanForD 2010 schema minor version number MUST be a sequentially as-
signed incremental non-negative integer.

27

9 STRUCTURE OF SCHEMAFILES

In the following chapters the physical layout of StanFord 2010 schema files is presented. Chapters
9.1 and 9.2 present the structure of the files as whole and in the following chapters most important
parts are explained more detailed way.

9.1 Structure of StanForD 2010 message schema files

The following rule defines the structure of StanForD 2010 message schema files using pseudo code
and after that there is a whole schema example of the HarvesterProduction message complies with
the presented layout.

[Rule 9.1] StanForD2010 message schema files, except “StanForD2010Common Defini-
tions.xsd” schema module, MUST conform to the following physical layout as ap-
plicable:

<l—— ======= XML Declaration======== -->

<?xml version="1.0" encoding=""UTF-8"?>

<l—— ======= Schema Header ======= —--—>

Document Name:
Generated On:
Version number:
Schema agency:
Schema web address:

<l-- ===== xsd:schema Element With Namespaces Declarations ===== -
->

xsd:schema element to include version attribute and namespace dec-
larations:
xmlns:xsd

Target namespace

Default namespace

Prefix definition for target namespace

Documentation namespace

All imported namespaces

Attribute Declarations
elementFormDefault="qualified"
attributeFormDefault=""unqualified”

Version Attribute

<l—— ===== |Includes ===== --
StanForDCommonDefinitions schema module
<l—— ===== |mports === ==

Optional schema modules

<l-- ===== Root Element ===== --

Root Element Declaration

<l-- ===== Type Definitions ===== --

Root Element Type Definition
All other schema specific type definitions

28

Example
<?xml version="1.0" encoding="UTF-8"7?>
< ! e TEIEAITAAITAAITAITAAAAAAAITAAAAIAAAIAAIAAAIAAAAAIAAAATAAAAAAAAAKxAAXAAikX —_>
<I-- *** HarvesterProduction XML Schema file FrRE __>
< ! e TEEIEAITAIAITAAITAITAAAAIAXAAITAIAAXAIAXAAAAIAAAITAAAAAAAAAIAAAAAAAAkIAAhkALikX —_>
<l--

Document Name: HarvesterProduction_V1p0.xsd

Generated On: 16 December 2008

Version number: 1.0 draft

Schema agency: Skogforsk

Schema web address: http://www.skogforsk.se/stanford2010/schema/

-—>

<xsd:schema xmlns:xsd=http://www.w3.0rg/2001/XMLSchema
targetNamespace=""urn:skogforsk:stanford2010"
xmIns="urn:skogforsk:stanford2010"
xmIns:sfd="urn:skogforsk:stanford2010"
xmIns:doc="urn:skogforsk:stanford2010:doc""
elementFormDefault="qualified" attributeFormDefault="unqualified"
version="draft_1.0">

<xsd:include schemalLocation="StanForD2010CommonDefinitions_V1p0.xsd"/>
<xsd:element name="‘HarvesterProduction' type="HarvesterProductionType'/>

<xsd:complexType name="HarvesterProductionType'>
<xsd:sequence>
<xsd:element name="'Stem" type="'StemType' maxOccurs="‘unbounded'/>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

9.2 Structure of ""StanForD2010CommonDefinitions.xsd” schema module

The following rule defines the structure of StanForDCommonDefinitions.xsd file using pseudo
code and after that there is a whole schema example complies with the presented layout.

[Rule 9.2] “StanForD2010Common Definitions.xsd”” schema module MUST conform to the
following physical layout as applicable:

<l-- ======= XML Declaration======== -->

<?xml version="1.0" encoding=""UTF-8"?>

<l—— ======= Schema Header ======= -->

Document Name:
Generated On:
Version number:
Schema agency:
Schema web address:

<Il-- ===== xsd:schema Element With Namespaces Declarations === -->
xsd:schema element to include version attribute and namespace dec-
larations:

xmIns:xsd

29

Target namespace

Default namespace

Prefix definition for target namespace

Documentation namespace

All 1mported namespaces

Attribute Declarations
elementFormDefault="qualified"
attributeFormDefaul t=""unqualified"

Version Attribute

<l—— ===== |mports E==== oo
Optional schema modules
<l-- ===== Type Definitions ===== --

All common type definitions
All common attribute group definitions

Example
<?xml version="1.0" encoding="UTF-8"7?>
< ! e TEIEAITAIAITAAIAAITAAAAAIAAITAAAAIAAAIAAIAAAIAAAAAIAAAAAAAAAAAAAAKhAhkAiikX —_>
<I-- *** StanForD2010CommonDefinitions XML Schema file FERE __>
< ! e TExEIEAIAIAIAAAITAITAAAAIAXAAITAAAXAIAXAAIAAIAAAIAAkAAAAAAAAkAAAkAhkAxAhkhkiikiiikx —_>
<l--
Document Name: StanForD2010CommonDefinitions_V2p0.xsd
Generated On: 16 June 2011
Version number: 2.0 draft
Schema agency: Skogforsk

Schema web address: http://www.skogforsk.se/stanford2010/schema/

-—>

<xsd:schema xmlns:xsd=http://www.w3.0rg/2001/XMLSchema
targetNamespace=""urn:skogforsk:stanford2010"
xmIns=""urn:skogforsk:stanford2010"
xmlIns:sfd="urn:skogforsk:stanford2010"
xmIns:doc="urn:skogforsk:stanford2010:doc""
elementFormDefault="qualified" attributeFormDefault="unqualified"
version="draft_2.0">

<xsd:complexType name="StemType">
<xsd:sequence>
<xsd:element name="Log" type="LogType'" maxOccurs=""unbounded"/>
</xsd:sequence>
<xsd:attribute name="'stemNumber' type="'xsd:integer" use="required"/>
<xsd:attribute name=""treeSpeciesName" type="'xsd:string" use="required'/>
<xsd:attribute name="barkParameterCode" type=''xsd:integer"/>
</xsd:complexType>

<xsd:complexType name="LogType''>
<xsd:sequence>
<xsd:element name="Volume" type="'xsd:decimal'/>
</xsd:sequence>
<xsd:attribute name="logNumber" type="xsd:integer" use="required"/>
<xsd:attribute name="assortmentName'" type="xsd:string" use="required"/>
</xsd:complexType>

</xsd:schema>

30

9.3 XML declaration

All standard XML files have XML declaration as a first line of document.
[Rule 9.3] All StanForD 2010 schema files MUST have following XML declaration:
<?xml version="1.0" encoding=""UTF-8"?>

There is W3C Recommendation for XML version 1.1. However the main issue that version 1.1 adds
to the version 1.0 is support to use "exotic" characters in element and attribute names. We have de-
cided to use only English names in element and attribute names so there is no need to use version
1.1. Additionally and more importantly, there is no software and tool support for version 1.1.

The encoding attribute should be UTF-8 (Unicode) because it is the most used and best supported

character set today. If we are using very exotic languages (from our point of view) there is possible
that UTF-8 does not include all necessary characters, and then we have to use UTF-16 instead.

9.4 Schema header

Every schema definition file must have comment section after XML declaration that includes the
information and layout defined in the following rule.

[Rule 9.4] Each StanForD 201 schema file MUST have comment section with following lay-
out and information:
<!__ FEEAKIAEAKRIAEAKRAIARAIAAAAAAIAAAIAAAAAAAAAkAAAkAAAkArAhkArhkhihkhiikiiih __ >
<I-- *** [Schema module name] XML Schema file FhE >
<!__ FEEAKIAEAKRIAEAKRAIAKRAIAAAAAAIAAAIAAAIAAAAAAAAAAAAAErAAkAArAhkhkihhihiiii __ >

Document Name:
Generated On:
Version number:
Schema agency:
Schema web address:

-—->
Example
< ! e AEEEAEAAEITEAEAAEAAEATAAAEAEAEAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAkAkAkAkAhkhhkiik*k —_>
<l-- *** HarvesterProduction XML Schema file FEE >
< ! e TEEEAEIAEAEITEAEITAIAAAAAAAAAAAAAAAAAAAkAAAAkAkAkAAhkhkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkhkihkkiiik —_>
<t--

Document Name: harvesterproduction_ V2p0.xsd

Generated On: 16 June 2008

Version number: 2.0 draft

Schema agency: Skogforsk

Schema web address: http://www.skogforsk.se/stanford2010/schema/

31

NB! The www address in the example above is not necessarily correct one.

9.5 xsd:schema element

xsd: schema element have many common attribute declarations in each StanForD 2010 schema
file.

Example

<xsd:schema xmlns:xsd=http://www.w3.0rg/2001/XMLSchema
targetNamespace=""urn:skogforsk:stanford2010"
xmIns="urn:skogforsk:stanford2010"
xmIns:sfd="urn:skogforsk:stanford2010"
xmIns:doc="urn:skogforsk:stanford2010:doc""
elementFormDefault="qualified" attributeFormDefault="unqualified"
version="draft_2.0">

The following rules define all the attributes and their values.

[Rule 9.5] Each StanForD 2010 schema file MUST declare namespace for XML Schema
Language and prefix xsd for it as follows:

xmIns :xsd=http://www.w3.0rg/2001/XMLSchema

All XML Schema Language element and attribute names are prefixed using xsd prefix.

The rules for targetNamespace and default namespace declarations are already presented in chapter
7.2.

[Rule 9.6] elementFormDefault attribute MUST have value ""qualified” and at-
tributeFormDefault MUST have value "unqualified™.

The above rule defines values for two attributes: elementFormDefault and at-
tributeFormDefault. The values of the attributes are most used best practices in situation
when we are using Venetian Blind schema design pattern and we have one common namespace for
all schema modules.

Rules for version attribute version are already presented in chapter 8.1.

32

9.6 xsd:include element

All StanForD 2010 message schema modules are using common type definitions from Stan-
ForD2010CommonDefintions schema module.

[Rule 9.7] Each StanForD 2010 message schema module MUST have following declaration

<xsd:include schemalLocation=""StanForD2010CommonDefinitions_<version>.xsd"/>

where <version> is version information as defined in chapter 8.1

xsd: include is a mechanism to include other schema modules in to current one. All the included
schema modules must belong to same target namespace. The value of schemalocation attribute
is defined to be URI and it is only a hint for processors and applications where to look the needed
schema module. In most cases StanForD2010CommonDefininitions schema module should be in a
same place (e.g. directory) as the schema module of the message so the pure file name is enough.

9.7 xsd:import element

If there is a need to use schema modules defined outside StanForD 2010 they are imported in mes-
sage schema modules using xsd: import element.

[Rule 9.8] Each StanForD 2010 schema modules that import other schemas MUST have fol-
lowing declaration

<xsd: import namespace=<othernamespace>
schemalLocation=<location>/>

where <othernamespace> is a namespace URI of the imported schema and <lo-
cation> is hint for a processor where to find imported schema module.

Additionally the imported schema modules MUST be declared in xsd:schema
element with proper prefixes so that they can be used properly.

33

10 EXTENSIBILITY

Information needs are changed every now and then and so must standards that define that infor-
mation. In StanForD 2010 there are needs for both machine manufacturers and users to do tests that
need information exchange that is not yet standardized and maybe never is to be standardized. It has
to be possible in StanFord 2010 to include non-standardized information in standard messages. Ho-
wever, the way to do it must be well defined and clear. XML Schema Language defines a wildcard
element xsd:any for this purpose. The basic idea behind that is in place where that wildcard exist
could be any well-formed XML structure. The xsd:any elements structure is as follows:

<xsd:any namespace="##any" processContents="lax"
minOccurs=""0" maxOccurs="unbounded"/>

xsd:any element have four attributes that are important to understand. The first one namespace
attribute can have values:

o' '#H#tany" Element and attribute names can be from any namespace or they
might not have namespace

o"'##tother" Element and attribute names come from some other namespaces
than our targetnamespace

o"'##targetnamespace’ Element and attribute names are from our targetnamespace

The second attribute processContents can have values:

e lax Validation is performed if possible.
e skip Validations not done.
estrict Validation is enforced.

minOccurs and maxOccurs attributes are limiting the number of top level elements in the place of
the wildcard.

It is in principle possible to put the wildcard declaration multiple places in StanForD 2010 schema
definitions. The most flexible way to do it is to put the wildcard declaration between all element
declarations in schema definitions and so it is possible to add extensible content in every place of
StanForD 2010 messages. However such flexibility is not desirable feature in StanFord 2010 stand-
ard which should provide well defined messages between wood production actors. Hence we define
more strict way to provide extensibility in StanForD 2010. Firstly we encapsulate the wildcard dec-
laration inside type definition ExtensionType as follows.

Example

<xsd:complexType name="ExtensionType">
<xsd:sequence>
<xsd:any namespace="##any" processContents="lax""
minOccurs=""1" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

34

We choose attribute values so that they provide us as much flexibility as possible and if necessary
validation of extent content might be possible. Secondly we declare Extension element in every
StanForD 2010 message schema in the same place. Extension element has to be the last element
in message type definition. Naturally Extension element is optional. The following Harvesterpro-
duction schema definition has Extension element declaration

Example

<?xml version="1.0" encoding="UTF-8"7?>
<xsd:schema

<xsd:element name=""HarvesterProduction" type="HarvesterProductionType'/>
<xsd:complexType name="HarvesterProductionType'>
<xsd:sequence>
<xsd:element name="'Stem" type="StemType' maxOccurs="unbounded'/>
<xsd:element name="Extension”™ type="ExtensionType"™ minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

Then we have example of Harvesterproduction message that have Extension element that in-
cludes both some elements with or without namespace.

Example

<?xml version="1.0" encoding="UTF-8"7?>
<sfd:HarvesterProduction
xmIns:sfd ="urn:skogforsk:stanford2010"
xmIns="urn:skogforsk:stanford2010"
xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmIns:ext="urn:extension"
xsi:schemalLocation=
""urn:skogforsk:stanford2010:1:draft HarvesterProduction_V1p0O.xsd'>
<Stem stemNumber="1" treeSpeciesName="Pine" barkParameterCode="1">
<Log logNumber="1" assortmentName="'Saw log'>
<Volume>400.0</Volume>
</Log>
<Log logNumber="2" assortmentName="Pulp'>
<Volume>150.0</Volume>
</Log>
</Stem>
<Extension>
<ext:Elementl>valuel</ext:Elementl>
<ext:Element2>value2</ext:Element2>
<NonamespaceElement>
<NestedValue>value3</NestedValue>
</NoNamespaceElement>
</Extension>
</sfd:HarvesterProduction>

Finally we present the rule that defines the use of the extension in StanForD2010.

[Rule 10.1] In StanForD 2010 all not standardized data MUST be included in predefined Ex-
tension elements. Extension elements are optional in every StanForD 2010 mes-

35

sages. Additionally xsd:any or xsd:anyAttribute elements MUST NOT be
used.

36

11 MISCELLANEOUS XML SCHEMA RULES

11.1 Element content compositors

XML Schema Language provides three compositors for grouping nested element declarations inside
an element. Those compositors are sequence, choice and al I. All schema definition examples
in this document are using sequence compositor. Each of these compositors has different rules
governing how the elements declared in schema can appear in instance documents. The rules for
each compositor are following

e sequence means that the elements declared inside it must appear in the same order in which
they are declared.

e choice means that only one declared element inside it can occur in the instance document.

e all allows the declared elements to occur in any order. Additionally, they can occur only
once or not at all.

Some rules that are restricting the use of certain compositors in StanForD 2010.

[Rule 11.1] The xsd:al I compositor MUST NOT be used in StanForD 2010 schema defini-
tions.

[Rule 11.2] The xsd:choiice compositor SHOULD NOT be used in StanForD 2010 schema
definitions if there is need for customization and extensibility in structures where
that compositor is used.

Because StanFord 2010 is standard for data-centric information (vs. document-centric) there is no
need for compositor that allows elements occur in any order.

11.2 Annotation and documentation

The schema definitions of StanForD 2010 are most important documents of the standard. However,
without any other documents the meaning and the semantics of the standards structures and data
content is not understandable enough.

XML Schema Language allows schema components to be annotated using the <annotation> el-
ement. The annotation element can contain one or more <documentation> or <appinfo> ele-
ments that can themselves have any attributes and contain any text or child elements.

[Rule 11.3] StanForD 2010 schemas MUST be documented using annotation and docu-
mentation elements. appinfo element MUST NOT be used. Additionally, the
XML comment notation MUST NOT be used for documentation. The format and
content of the documentation will be defined in StanForD 2010 schema definition
working group.

Although the schema annotation is necessary, its volume results in a considerable increase in the
size of the StanForD 2010 schemas. To address this issue, two schemas will be developed for each

37

StanForD 2010 schema module. A normative, fully annotated schema will be provided to facilitate
greater understanding of the schema module. A non-normative schema without annotation will also
be provided that can be used for validation purposes especially at run-time.

[Rule 11.4] StanFord 2010 MUST provide two schemas for each schema module. One norma-
tive schema shall be fully annotated. One non-normative schema shall be without
annotation.

11.3 Other rules

In XML instance documents it is possible that element have mixed content, in which case elements
are allowed to have both child elements and textual content. Including mixed content in StanFord
2010 messages is undesirable because message transactions are based on exchange of discrete piec-
es of data that must be clearly unambiguous.

[Rule 11.5] Mixed content MUST NOT be used.

XML Schema Language has two alternatives to provide reference constraints between elements.
xsd:key/xsd:keyref must be used because the use of xsd: ID/xsd: I1DREF has limitations.

[Rule 11.6] xsd:key/xsd:keyref MUST be used for element referencing
xsd: ID/xsd: IDREF MUST NOT be used.

xsd:key/xsd:keyref constraint is also unique constraint i.e. every key value is unique inside on in-
stance document. If there is other values than keys that should also be unique xsd:unique con-
straint should be used.

[Rule 11.7] xsd:unique SHOULD be used where appropriate.

XML Schema Language has properties that allows fixed or default values to be specified for ele-
ments and attributes. Exploiting these properties require that schema must be present at the time the
corresponding instance document is created otherwise those values are missing from the document.
This is such serious restriction that these properties are not allowed in StanForD 2010 schemas.
[Rule 11.8] xsd:fixed and xsd:default attributes MUST NOT be used.

A best practice is to deny the use of xsd:notation attribute.

[Rule 11.9] xsd:notation MUST NOT be used.

38

12 STANFORD 2010 INSTANCE DOCUMENTS

In this chapter we present rules and issues that are specific to StanForD 2010 instance documents
i.e. messages.

12.1 Validation

It is self-evident that all StanForD 2010 messages must be validated against schema. If they don't
validate they are not StanForD 2010 conformant messages.

[Rule 11.1] All StanForD 2010 messages MUST validate to a corresponding schema.

12.2 Structure of StanForD 2010 messages

The following rule defines the common structure of StanForD 2010 message files using pseudo
code and after that there is a whole message example complies with the presented layout.

[Rule 12.2] StanForD 2010 messages MUST conform to the following physical layout as ap-

plicable:
<l—— ======= XML Declaration======== -->
<?xml version="1.0" encoding=""UTF-8"?>
<l-- ===== root element with namespaces declarations === -->
root element to include namespace declarations in the following
order :

StanForD 2010 namespace
Default namespace
XMLSchema-instance namespace
Schema location

Content of the message

Example

<?xml version="1.0" encoding="UTF-8"7?>
<sfd:HarvesterProduction xmlns:sfd="urn:skogforsk:stanford2010"
xmIns="urn:skogforsk:stanford2010"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="urn:skogforsk:stanford2010
harvesterProduction_V2p0.xsd">
<Stem stemNumber="'1" treeSpeciesName="Pine" barkParameterCode="1"">
<Log logNumber="1" assortmentName="Saw log">
<Volume>400.0</Volume>
</Log>
<Log logNumber="2" assortmentName="Pulp'>
<Volume>150.0</Volume>
</Log>
</Stem>
</sfd:HarvesterProduction>

39

12.3 XML Declaration

XML declaration is completely similar than declaration in schema structure that was presented and
detail explained in chapter 9.3.

12.4 Attributes in the root element of the messages

The root element of each message MUST have following declarations:

[Rule 12.3] The root element of each StanForD 2010 message MUST have following
namespace declarations and schema location attribute:

xmIns:sfd=""urn:skogforsk:stanford2010"
xmIns=""urn:skogforsk:stanford2010"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi :schemalLocation=""urn:skogforsk:stanford2010

<URI path to schema file>"

where

<version> is version information that format was presented in chapter 7.1
<URI path to schema file> this is a hint for processor where to find cor-
responding schema file of the message.

Prefix for StanForD 2010 namespace MUST always be sfd.

12.5 Empty content

In general, the absence of an element in an XML schema does not have any particular meaning - it
may indicate that the information is unknown, or not applicable, or the element may be absent for
some other reason. The XML Schema specification does provide a feature, the xsd:nillable at-
tribute that defines that elements value could be missing i.e. it have element tags but no value. Use
of empty elements within XML instance documents is a source of controversy for a variety of rea-
sons. An empty element does not simply represent data that is missing.

[Rule 12.4] Empty elements SHOULD NOT be used in StanForD 2010 messages. However if
element have at least one mandatory and not empty attribute then the element may
be empty.

APPENDIX A. StanForD 2010 abbreviations and acronyms

40

Abbreviation/acronym

Actual word or phrase

ID

Identifier

GIS Geographical Information System
DBH Diameter Breast Height

MIN Minimum

MAX Maximum

MTH Multi tree handle

41

APPENDIX B. Standard suffixes for certain representation types in StanForD

2010

Representation type | Description Example
Code A character string that represents a member of | AssortmentCode
a set of values.
DateTime A particular point in the progression of time. | StartDate
Identifier A character string used to identify and distin- | MachinelD
guish uniquely, one instance of an object
within an identification scheme. The standard
abbreviation ID, meaning a unique identifier,
should be used in actual names.
Name A word or phrase that constitutes the distinc- | AssortmentName
tive designation of a person, object, place,
event, concept etc.
Quantity A number of non-monetary units. It is normal- | TotalQuantity
ly associated with a unit of measure.
Number A numeric value which is often used to imply | LogNumber
a sequence or a member of a series.
Text A character string generally in the form of OptionalText

words.

	1 Introduction
	1.1 Background
	1.2 Audience
	1.3 Terminology and notion
	1.4 Main resources
	1.5 Example used in this document

	2 XML Schemas
	2.1 Overall schema rules
	2.2 Schema modules

	3 Naming constraints
	4 Elements and attributes
	4.1 Naming conventions
	4.2 Using philosophy

	5 Type definitions
	5.1 Overall type definition rules
	5.2 Simple types
	5.3 Complex types
	5.4 Attribute groups

	6 XML schema design patterns
	6.1 Russian Doll
	6.2 Salami Slice
	6.3 Venetian Blind
	6.4 Garden of Eden
	6.5 Schema design pattern for StanForD 2010

	7 Namespaces
	7.1 Namespace Uniform Resource Identifiers
	7.2 Declaring namespaces in schemas

	8 Versioning
	8.1 Overall versioning rules
	8.2 Major versions
	8.3 Minor versions

	9 Structure of schema files
	9.1 Structure of StanForD 2010 message schema files
	9.2 Structure of "StanForD2010CommonDefinitions.xsd” schema module
	9.3 XML declaration
	9.4 Schema header
	9.5 xsd:schema element
	9.6 xsd:include element
	9.7 xsd:import element

	10 Extensibility
	11 Miscellaneous XML Schema rules
	11.1 Element content compositors
	11.2 Annotation and documentation
	11.3 Other rules

	12 Stanford 2010 Instance Documents
	12.1 Validation
	12.2 Structure of StanForD 2010 messages
	12.3 XML Declaration
	12.4 Attributes in the root element of the messages
	12.5 Empty content

	APPENDIX A. StanForD 2010 abbreviations and acronyms
	APPENDIX B. Standard suffixes for certain representation types in StanForD 2010

